Package: dlmtree 1.0.0
dlmtree: Bayesian Treed Distributed Lag Models
Estimation of distributed lag models (DLMs) based on a Bayesian additive regression trees framework. Includes several extensions of DLMs: treed DLMs and distributed lag mixture models (Mork and Wilson, 2023) <doi:10.1111/biom.13568>; treed distributed lag nonlinear models (Mork and Wilson, 2022) <doi:10.1093/biostatistics/kxaa051>; heterogeneous DLMs (Mork, et. al., 2024) <doi:10.1080/01621459.2023.2258595>; monotone DLMs (Mork and Wilson, 2024) <doi:10.1214/23-BA1412>. The package also includes visualization tools and a 'shiny' interface to help interpret results.
Authors:
dlmtree_1.0.0.tar.gz
dlmtree_1.0.0.zip(r-4.5)dlmtree_1.0.0.zip(r-4.4)dlmtree_1.0.0.zip(r-4.3)
dlmtree_1.0.0.tgz(r-4.4-x86_64)dlmtree_1.0.0.tgz(r-4.4-arm64)dlmtree_1.0.0.tgz(r-4.3-x86_64)dlmtree_1.0.0.tgz(r-4.3-arm64)
dlmtree_1.0.0.tar.gz(r-4.5-noble)dlmtree_1.0.0.tar.gz(r-4.4-noble)
dlmtree_1.0.0.tgz(r-4.4-emscripten)dlmtree_1.0.0.tgz(r-4.3-emscripten)
dlmtree.pdf |dlmtree.html✨
dlmtree/json (API)
NEWS
# Install 'dlmtree' in R: |
install.packages('dlmtree', repos = c('https://danielmork.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/danielmork/dlmtree/issues
- coExp - Randomly sampled exposure from Colorado counties
- exposureCov - Exposure covariance structure
- pm25Exposures - PM2.5 Exposure data
- zinbCo - Time-series exposure data for ZINB simulated data
Last updated 5 months agofrom:78105c0426. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win-x86_64 | OK | Oct 30 2024 |
R-4.5-linux-x86_64 | OK | Oct 30 2024 |
R-4.4-win-x86_64 | OK | Oct 30 2024 |
R-4.4-mac-x86_64 | OK | Oct 30 2024 |
R-4.4-mac-aarch64 | OK | Oct 30 2024 |
R-4.3-win-x86_64 | OK | Oct 30 2024 |
R-4.3-mac-x86_64 | OK | Oct 30 2024 |
R-4.3-mac-aarch64 | OK | Oct 30 2024 |
Exports:adj_coexposurecombine.modelscombine.models.tdlmmcppIntersectiondlmEstdlmtreedlmtreeGPFixedGaussiandlmtreeGPGaussiandlmtreeHDLMGaussiandlmtreeHDLMMGaussiandlmtreeTDLM_cppdlmtreeTDLMFixedGaussiandlmtreeTDLMNestedGaussiandlnmEstdlnmPLEstdrawTreeestDLMget_sbd_dlmtreemixEstmonotdlnm_Cpppipplot.summary.monotoneplot.summary.tdlmplot.summary.tdlmmplot.summary.tdlnmppRangepredict.hdlmpredict.hdlmmprint.hdlmprint.hdlmmprint.monotoneprint.summary.hdlmprint.summary.hdlmmprint.summary.monotoneprint.summary.tdlmprint.summary.tdlmmprint.summary.tdlnmprint.tdlmprint.tdlmmprint.tdlnmrcpp_pgdrawrtmvnormruleIdxscaleModelMatrixshinyshiny.hdlmshiny.hdlmmsim.hdlmmsim.tdlmmsim.tdlnmsplitPIPsplitpointssummary.hdlmsummary.hdlmmsummary.monotonesummary.tdlmsummary.tdlmmsummary.tdlnmtdlmmtdlmm_Cpptdlnmtdlnm_CppzeroToInfNormCDF
Dependencies:base64encbslibcachemclicolorspacecommonmarkcpp11crayondigestdplyrfansifarverfastmapfontawesomefsgenericsggplot2gluegtablehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpromisespurrrR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenrlangsassscalesshinyshinythemessourcetoolsstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxtable